Search results

1 – 3 of 3
Article
Publication date: 24 January 2020

Jin Oh Chung, Sang Ryul Go, Hee Bum Choi and Tae Kwan Son

This paper aims to investigate the temperature dependence of transfer film formation and friction coefficients in NAO friction materials with four different abrasive components…

Abstract

Purpose

This paper aims to investigate the temperature dependence of transfer film formation and friction coefficients in NAO friction materials with four different abrasive components, ZrO2, ZrSiO4, Al2O3 and Fe3O4.

Design/methodology/approach

8.5% SnS2 was added as a lubricating component to friction materials. Friction tests comprised 100 times of consecutive braking application for each friction material under constant temperature of 300°C, 400°C, 500°C and 600°C. After the friction tests, the friction surfaces of the counterpart disks were examined by scanning electron microscope to access the formation of transfer film.

Findings

Coefficients of friction depended on not only friction temperature but also friction history which is related to development of transfer film. The effect of the transfer film formation was to reduce the friction coefficients for most friction materials. Quantities of the transfer film formation varied with friction materials; at low temperature below 400° the transfer film formation was most active in the Fe3O4 materials, while at 600° it was the most active in the Al2O3 material. The effect of the lubricating component SnS2 was to suppress the formation of transfer film, thus enhancing friction coefficients.

Social implications

The enhancement of friction coefficients with addition of small amount of lubricating components such as SnS2 is expected to open a new approach in developing high performance-brake pads.

Originality/value

Temperature was the controlling parameter in the present test. Under these test modes, transfer film could be fully developed to access the role of the transfer film.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-10-2019-0427/

Details

Industrial Lubrication and Tribology, vol. 72 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 30 November 2018

Jin Oh Chung, Sang Ryul Go, Jeong Hee Kim, Jong Geun Choi, Hyang Rae Kim and Hee Bum Choi

The purpose of this paper is to investigate surroundings for transfer film formation and removal, the effect of the transfer film formation on friction coefficients, the effect of…

Abstract

Purpose

The purpose of this paper is to investigate surroundings for transfer film formation and removal, the effect of the transfer film formation on friction coefficients, the effect of four different abrasive components, ZrO2, ZrSiO4, Al2O3 and Fe3O4, on transfer film formation and the effect of lubricating component MoS2 on transfer film formation and friction coefficients.

Design/methodology/approach

Two different MoS2 contents of 5.5 and 8.5 per cent were added to friction materials with no MoS2 content, which have four different abrasive components, ZrO2, ZrSiO4, Al2O3, Fe3O4. Friction tests composed of three different stages were conducted for those materials, and the friction surfaces of the counterpart disks were examined by scanning electron microscopy (SEM) to access the formation of transfer film at each stage.

Findings

For the transfer film formation, high temperature was a prerequisite, but the magnitude of deceleration rate was not important. The effect of the transfer film formation was to reduce the friction coefficients for most friction materials. Friction coefficients of materials which contain lubricating component MoS2 were higher than those which contain no MoS2 for most friction materials. The effect of the lubricating component MoS2 was to suppress the formation of transfer film, thus resulting in increase in friction coefficients.

Research limitations/implications

The transfer film was rather thin, with thickness of 1-2 µm for most friction materials. That hindered the examination of mechanical properties of the transfer film, such as hardness.

Practical implications

This research explained the surroundings for transfer film formation, and its effect on friction coefficients. The research suggests to suppress the formation of transfer film to make friction materials with high friction coefficient, and the lubricating component MoS2 can be used for the purpose.

Social implications

Development of high-friction-brake materials conventionally depends on the use of strong abrasive components, which may induce attacking of counterpart disks. The enhancement of friction coefficients with addition of MoS2 content is expected to open a new prospect in development of high-performance friction materials, which can be applicable to brake pads for racing cars.

Originality/value

The study is in pursuit of the transfer film formation in successive friction stages, which revealed the conditions for transfer film generation and removal. Specimen preparation for SEM observation of cross section of friction surface was painstaking to not damage the developed friction surface. The study revealed the effect of different abrasive components on transfer film formation and the effect of lubrication contents of MoS2 on transfer film formation and friction coefficients.

Details

Industrial Lubrication and Tribology, vol. 71 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 30 June 2011

Hyung-Geun Kim

China is currently developing and promoting an industrial cluster policy at the government level. By enacting the ‘Opinion on promoting industrial cluster development’, China is…

Abstract

China is currently developing and promoting an industrial cluster policy at the government level. By enacting the ‘Opinion on promoting industrial cluster development’, China is supporting the development of industrial clusters. Building an industrial cluster is done by using a single factor but requires many additional factors like regional characteristics, competitiveness factors are also diversified. To evaluate the competitiveness of the Chinese automobile industry cluster, a competitiveness element index should be developed and a competitiveness evaluation method is needed to evaluate the importance of each element. To accomplish this objective, this research applied the analytic hierarchy process (AHP) and focused on the importance of the competitiveness elements.

This research investigated the character is tics regarding cases of clusters and also analyzed the competitiveness of the Changchun automobile cluster located in northeastern China. The purpose of this research is to help Korean enterprises who enter China in the hopes that Korea will emerge as a top automobile production country.

Details

Journal of International Logistics and Trade, vol. 9 no. 1
Type: Research Article
ISSN: 1738-2122

Keywords

1 – 3 of 3